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Abstract—Profile and plan curvature are standard tools
in geomorphometry. Streamline curvature has not been as
widely used but is a natural counterpart to plan curvature.
Expressions for all three types of curvature can be easily
derived using the concept of a directional derivative. Various
types of curvature can sometimes be used to make general
statements about the solutions to a PDE (partial differential
equation). Examples are given to show how nonlinear, first
and second-order PDEs can be manipulated with simple
algebra to get expressions regarding their solutions in terms of
curvatures. These expressions are powerful in that they allow
us to use our intuitive, geometric understanding of curvature
concepts to better understand nonlinear PDEs for which it is
often difficult to obtain analytical or numerical solutions.

I. BACKGROUND

A. Slope and Aspect

Let f(x, y) denote a surface and ∇f = (fx, fy, 0) =
fxî+ fy ĵ denote the gradient of this surface (a 2D vector
field). Note that the subscripts x and y indication partial
derivatives. Recall that ∇f and −∇f point in the steepest
uphill and downhill directions, respectively, but ∇f has
no z-component. The slope at each point is defined as the
magnitude of the gradient vector and is a scalar field

S(x, y) = |∇f | =
√
f2x + f2y . (1)

Note that S ≥ 0. The aspect at each point is defined as

φ(x, y) = arctan

(
fy
fx

)
. (2)

Aspect is the angle that the (2D) gradient vector, ∇f ,
makes with a fixed, but arbitrary x-axis. Note that most
programming languages provide a two-parameter arctan
function that returns a value in the correct quadrant. Since
∇f points uphill, the flow direction angle is φ(x, y)+π. Let
∇⊥f = (fy,−fx) denote a vector field that is everywhere
perpendicular to the gradient of f (to the right of ∇f and to
the left of −∇f ). Note that

(
∇⊥f · ∇f

)
= 0, as required

to be perpendicular.

B. Directional Derivatives

Recall that a directional derivative can be used to com-
pute the rate at which any given scalar field, F (x, y), is
changing as we move in the direction of some unit vector,
n̂. That is,

Dn̂(F ) = ∇F · n̂. (3)

This expression can be used to define several different kinds
of curvature as will be seen in the following section. Note
that ∇F is a 2D vector field and n̂ can also be a 2D vector
field, such as n̂ = (−∇f/S).

II. DERIVATIONS OF CURVATURE

A. Profile Curvature

Profile curvature is the rate at which surface slope, S,
changes as we move in the direction of the unit vector
(−∇f /S), (i.e. following a streamline downstream). It can
be expressed in coordinate-free form as:

κp = −S−1 (∇S · ∇f) . (4)

To get an expression in Cartesian coordinates, we start with
the definition of slope, S(x, y), and the fact that ∇S =
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(Sx, Sy). Taking derivatives of S and simplifying, we get

S Sx = (fx fxx + fy fxy) (5)

S Sy = (fx fxy + fy fyy) . (6)

Using these, we get

κp = −S−2
(
f2x fxx + 2 fx fy fxy + f2y fyy

)
. (7)

A longitudinal profile for a streamline passing through
(x, y) is locally concave up if κp(x, y) < 0, and convex (or
concave down) otherwise. As stated by [3], the convention
in geomorphometry is to define curvatures as negative for
concavities and positive for convexities. An extra factor
of
(
1 + S2

)3/2 appears in the denominator if we define
curvature based on differential movements along the 3D
streamline curve (that lies on the surface) instead of along
the 2D streamline curve (that lies in the xy plane).

B. Plan Curvature

Plan or contour curvature is the rate at which flow
direction (given by φ + π) changes as we move in the
direction of (∇⊥f/S), (i.e. following a contour line). It
can be expressed in coordinate-free form as:

κc = S−1
(
∇φ · ∇⊥f

)
. (8)

To get an expression in Cartesian coordinates, we start
with (2) and the fact that ∇φ = (φx, φy). Recall that
d
dx [arctan(x)] = 1/(1 + x2) in all quadrants. Taking
derivatives of φ and simplifying, gives

S2 φx = (fx fxy − fy fxx) (9)

S2 φy = (fx fyy − fy fxy) (10)

which finally leads to

κc = −S−3
(
f2y fxx − 2 fx fy fxy + f2x fyy

)
. (11)

Note that κc(x, y) measures the curvature of the contour
line (a curve in the xy plane) that goes through the point
(x, y). Plan curvature is negative for valleys and positive
for ridges. See the Applications section. Plan curvature is
closely related to the tangential curvature, given by

κt =
f2y fxx − 2 fx fy fxy + f2x fyy

−S2
√
1 + S2

. (12)

The key difference is that κt is a normal curvature. The
extra function of S in the denominator is due to the angle
between the surface normal and the xy plane. That is,
κt(x, y) measures the curvature of the 3D curve formed
by the intersection of the surface f(x, y) and the plane
that contains both the surface normal vector at (x, y) and
∇⊥f . Expressions for plan curvature should not have extra
functions of S in the denominator.

C. Streamline Curvature

By analogy with how plan and profile curvature are
defined, we can define streamline curvature as the rate at
which the flow direction (φ + π) changes as we move in
the direction of (−∇f/S), (i.e. following a streamline). It
is the inverse of a streamline’s local radius of curvature,
which measures how tightly the streamline bends. It can be
expressed in coordinate-free form as:

κs = −S−1 (∇φ · ∇f) . (13)

To express this in Cartesian coordinates we can use (9) and
(10) again to get

κs = −S−3
[
fx fy (fxx − fyy) +

(
f2y − f2x

)
fxy
]
. (14)

According to [10], this type of curvature was first consid-
ered by [8] but neither this nor plan curvature belong to
the “complete system of curvatures” discussed by [9]. The
sign distinguishes right from left, but typically only the
magnitude (absolute value) would be of interest.

III. APPLICATIONS OF CURVATURE

A. A Descending Ridge or Valley

A parabolic sheet surface atop an inclined plane, given
by f(x, y) = a x2 + b y, provides a simple model of a
descending ridge or valley. This surface has S(x, y) =√
4 a2 x2 + b2 and

κc(x, y) = −2 a b2 S−3 (15)

κp(x, y) = −8 a3 x2 S−2 (16)

κs(x, y) = −4 a2 b xS−3. (17)

For a > 0, it looks like a parabolic valley (concave up) and
has κc < 0 everywhere. For a < 0, it looks like a parabolic
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ridge (convex) and has κc > 0 everywhere. The centerline
of the ridge or valley is given by the line x = 0 and is a
line of constant slope. For this example, it is possible to
obtain expressions for the contour and streamline curves as
functions of x

yc(x) = (u/b)− (a/b)x2 (18)

ys(x) = v + b ln(x2)/(4a) (19)

where different values of u and v give different contours
and streamlines. Applying the standard formula for curva-
ture of a plane curve reproduces κc(x, y) and κs(x, y) as
given above and serves as a simple check.

B. The Equation of Geometrical Optics

There is an interesting class of surfaces such that the
slope, S(x, y), at every point on the surface is the same;
see [1], [5]. These surfaces satisfy the nonlinear, first-order
PDE (

f2x + f2y
)
= S2 = c > 0. (20)

This is known as the equation of geometrical optics because
its streamlines describe the straight paths of light rays in
optical equipment (e.g. lenses and mirrors). Planes and
cones are simple examples of such surfaces. Since S
is constant everywhere, we expect that all such surfaces
should have the profile curvature, κp = 0 everywhere. To
prove that this is the case, we take the x-derivative of (20)
and the y-derivative of (20) to generate two new equations

fx fxx + fy fxy = 0 (21)

fy fyy + fx fxy = 0. (22)

Multiplying (21) by fx and (22) by fy and then adding
gives

f2x fxx + 2 fx fy fxy + f2y fyy = 0. (23)

This shows that κp = 0 everywhere; see (7). But if the
streamlines of such surfaces are always straight lines, then
we should also have κs = 0 at every point on all such
surfaces. This can be proven in a similar manner, by
multiplying (21) by fy and (22) by fx and then subtracting
to get

fx fy (fxx − fyy) +
(
f2y − f2x

)
fxy = 0. (24)

This shows that κs = 0 everywhere; see (14).
A general, parametric solution to (20) (with c=1) can be

found using the method developed by [5] and is given by

x(u, v) = u cos [φ(v)]− ∫ C(v) sin [φ(v)] dv (25)

y(u, v) = u sin [φ(v)] + ∫ C(v) cos [φ(v)] dv (26)

z(u, v) = u (27)

where φ(v) and C(v) are arbitrary functions of v, and
φ(v) is the aspect angle for a constant-v streamline. Note
that x(u, v) and y(u, v) describe an orthogonal, curvilinear
coordinate system where constant-u curves are contours and
constant-v curves are streamlines. Orthogonality is easy to
check: xuxv+yuyv = 0. A plane, f(x, y) = a x+b y+c, is
obtained for φ(v) = φ0. A cone, f(x, y) =

√
x2 + y2 + c,

is obtained for φ(v) = v and C(v) = −c. Fig. 1 shows the
surface obtained when C(v) = 1 and φ(v) = −a cos(v)
The u = 0 contour line is the sine-generated curve model
for meandering streams introduced by [2], with φ′(v) =
a sin(v), v = arclength, a = 1.8 and u ∈ [−0.3, 0.3].

Fig. 1. A meander sheet surface with a constant slope of 1 everywhere.

C. Laplace’s Equation

Laplace’s equation is a linear, elliptic, second-order PDE
that is used as a model in many different contexts from
electrostatics to aerodynamics. It is given by

∇2f = (fxx + fyy) = 0. (28)

Using our previous expressions for plan (7) and profile
curvature (11) we can rewrite Laplace’s equation as

κp + S κc = 0. (29)
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Since we always have S ≥ 0, this shows that at any given
point (x, y), the plan and profile curvatures for any solution
to Laplace’s equation must have opposite signs. This is
well-illustrated by one of the simplest solutions to Laplace’s
equation, the saddle surface, f(x, y) = x2 − y2.

D. The Minimal Surface Equation

The minimal surface equation provides a good model for
the soap film surfaces created when any twisted wire loop
is dipped into soap solution. In Cartesian coordinates, it is(

1 + f2y
)
fxx − 2 fx fy fxy +

(
1 + f2x

)
fyy = 0. (30)

Solutions have the smallest possible surface area of any
surface that fits across the wire loop (i.e. matches the
boundary condition). But the left-hand side of this equation
is the numerator of the standard expression for mean
curvature. Equation (30) can also be written as

κp + κc S
(
1 + S2

)
= 0. (31)

E. An Idealized Steady-State Landscape Equation

An idealized mathematical model for steady-state fluvial
landscapes has been proposed and analyzed by [4], [5], [6].
In coordinate-free form it is given by

∇ ·
(
Sγ−1∇f

)
= −R? (32)

where R? = R/q1 is a rescaled effective rainrate, γ is a
parameter from a slope-discharge relationship of the form
q = q1 S

γ and q is unit-width discharge. It can be shown
that this second-order, nonlinear PDE is hyperbolic when
γ < 0, parabolic when γ = 0 and elliptic when γ > 0.
The well-known empirical relations of hydraulic geometry
imply that a mature, fluvial landscape will have γ ≈ −1.
By expressing (32) in Cartesian coordinates and then using
(11) and (7), this PDE can be rewritten in the form

κp = (S/γ)
(
R? S−γ − κc

)
. (33)

This allows us to make general statements about the char-
acter of solutions to (32) in terms of how plan and profile
curvature must be related at each point. Note that S and
R? are always nonnegative. If we assume that γ < 0, we
can deduce the following from (33).

• Longitudinal profiles in valleys are always concave up.
Note that κc < 0 (valley) implies that κp < 0.

• Narrower valleys have higher profile curvatures. For
a fixed S, |κp| increases linearly with |κc|. Valley
width can be defined as proportional to the radius of
curvature or w ∝ rc = 1/|κc|.

• Steeper valleys have higher profile curvatures. For a
fixed κc < 0 (valley), |κp| is a rapidly increasing
function of slope, S. In fact, if κc = 0 everywhere,
as it is for a sheet-like surface with parallel contour
lines, (33) can be solved as an ODE. For γ = −1 we
find that f(x, y) = (−1/R?) ln(x+ c).
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